Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zheng-Yu Yue,* Hui-Jie Jin, Peng-Fei Yan and Po Gao

College of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
yuezhengyu@vip.sina.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.032$
$w R$ factor $=0.065$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquatris(nicotinato-kO)bis(1,10-phenanthroline$\left.\kappa^{2} N, N^{\prime}\right)$ praseodymium(III) trihydrate

Abstract

The structure of the title compound, $\left[\operatorname{Pr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3}\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, is composed of a discrete neutral Pr complex and solvent water molecules. The $\mathrm{Pr}^{\mathrm{II}}$ center is nine-coordinate and exhibits a monocapped square-antiprismatic coordination geometry formed by three O atoms of distinct nicotinate groups, four N -atom donors of two 1,10phenanthroline molecules and two aqua ligands.

Comment

The structures and properties of many lanthanide compounds containing 1,10-phenanthroline (phen) and acid groups have been reported, for example, tetrabenzoato- $O: O^{\prime}$-bis-[(benzoato- $\left.O, O^{\prime}\right)\left(1,10\right.$-phenanthroline- $\left.N, N^{\prime}\right)$ lanthanum(III)] (Shi et al., 2001), aquatris(1,10-phenanthroline)(trans-2,3-dimethylacrylato)ytterbium(III) (Lu et al., 2000), di- μ-meth-acrylato- O : O^{\prime}-bis $\left[\left(1,10\right.\right.$-phenanthroline- $\left.N, N^{\prime}\right)$ bis(methacryl-ato- O, O^{\prime})ytterbium(III)] (Lu et al., 1999) and bis(pivalato)-bis(1,10-phenanthroline)nitratopraseodymium(III) (Pisarevskii et al., 1995). Furthermore, the nicotinate group has been widely investigated in metal coordination complexes and has shown diverse coordination modes (Clegg et al., 1995; Chapman et al., 2001). A europium(III) complex, diaqua-bis(nicotinato- $\left.O, O^{\prime}\right)$ (nicotinato- O)(1,10-phenanthroline)europium(III) dimethylsulfoxide solvate (Palkina et al., 1995), containing both nicotinate and phen ligands, has been reported; this complex contains one phen group in each molecule. We report here the structure of the title $\operatorname{Pr}^{\text {III }}$ compound, (I), which contains two phen and three nicotinate groups in each molecule. The structural differences may be attributed to the different solvents used in the preparation of the compounds.

(I)

Compound (I) is composed of a discrete neutral Pr complex and solvent water molecules (Fig. 1 and Table 1). The $\mathrm{Pr}^{\mathrm{III}}$ ion is nine-coordinated by four O atoms of three distinct nicotinate groups, four N atoms of two phen molecules and two aqua ligands. The coordination geometry can best be described as monocapped square antiprismatic, where N7/O8/ O5/O3 and O7/O2/N4/N5 form the two square planes and atom N6 is in the monocapping position. The mean $\mathrm{Pr}-$

Received 27 April 2004 Accepted 25 May 2004 Online 5 June 2004

Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids.

O (nicotinate) bond length is $2.440(2) \AA$, which is slightly shorter than that of the $\operatorname{Pr}-\mathrm{O}$ (aqua) bonds [mean 2.482 (2) \AA] , and the $\operatorname{Pr}-\mathrm{N}$ bond distances lie in a narrow range from 2.695 (2) to 2.730 (2) \AA, with a mean value of 2.710 (2) \AA.

The dihedral angle between the two phen planes is $82.4(4)^{\circ}$. Non-coordinated carboxyl atom O1 participates in a hydrogen-bonding interaction (Table 2) with aqua atom O7, with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.626 (3) \AA. The C $8 / \mathrm{C} 9 / \mathrm{N} 2 / \mathrm{C} 10-$ C12 pyridyl ring of one of the nicotinate groups forms an intramolecular $\pi-\pi$ interaction with the benzene ring (C34$\mathrm{C} 37 / \mathrm{C} 41 / \mathrm{C} 42$) of one of the phen ligands. The center-to-center and perpendicular distances are 3.684 (2) and 3.638 (2) A, respectively, with a dihedral angle of $12.6(2)^{\circ}$ between the two rings. The Pr complex and solvent water molecules are held together by intermolecular hydrogen bonds (Table 2) to form a two-dimensional double layer parallel to the $a b$ plane.

Experimental

To a solution of nicotinic acid (0.6 mmol) dissolved in water-EtOH (2:1, 30 ml$)$ was added a solution of $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}(0.2 \mathrm{mmol})$ and phen $(0.4 \mathrm{mmol})$ in $\mathrm{EtOH}(25 \mathrm{ml})$. The resulting solution was then filtered and left to stand at room temperature. Crystals of (I) suitable for X-ray analysis were obtained after several days (yield ca 45%).

Crystal data

$\left[\mathrm{Pr}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$	$Z=2$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.557 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=957.70$	Mo K α radiation
Triclinic, $P \overline{1}$	Cell parameters from 885
$a=9.058(3) \AA$	reflections
$b=12.922(5) \AA$	$\theta=2.9-26.3^{\circ}$
$c=17.826(6) \AA$	$\mu=1.26 \mathrm{~mm}^{-1}$
$\alpha=84.966(5)^{\circ}$	$T=293(2) \mathrm{K}$
$\beta=80.597(5)^{\circ}$	Prism, colorless
$\gamma=84.398(5)^{\circ}$	$0.24 \times 0.24 \times 0.22 \mathrm{~mm}$
$V=2043.1(12) \AA^{\circ}$	

$\left[\operatorname{Pr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=957.70$
Triclinic, $P 1$
$a=9.058$ (3) A
$b=12.922(5) \AA$
$\alpha=84.966(5)^{\circ}$
$\beta=80.597$ (5) ${ }^{\circ}$
$V=2043.1(12) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.557 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 885 \\
& \quad \text { reflections } \\
& \theta=2.9-26.3^{\circ} \\
& \mu=1.26 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.24 \times 0.24 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996;
Blessing, 1995)
$T_{\text {min }}=0.751, T_{\text {max }}=0.769$
11836 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.065$
$S=1.03$
8275 reflections
590 parameters

8275 independent reflections
7083 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 12$
$l=-17 \rightarrow 22$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0268 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\max }=0.32 \mathrm{e}^{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

Pr1-O2	$2.474(2)$	Pr1-N4	$2.718(2)$
Pr1-O3	$2.364(2)$	Pr1-N5	$2.696(2)$
Pr1-O5	$2.482(2)$	Pr1-N6	$2.730(2)$
Pr1-O7	$2.487(2)$	Pr1-N7	$2.695(2)$
Pr1-O8	$2.476(2)$		
O3-Pr1-N6	$67.33(7)$	O7-Pr1-N6	$118.65(8)$
O2-Pr1-N6	$130.77(7)$	N7-Pr1-N6	$60.48(7)$
O8-Pr1-N6	$68.63(8)$	N5-Pr1-N6	$137.34(7)$
O5-Pr1-N6	$75.96(7)$	N4-Pr1-N6	$126.93(7)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2W-H2WA $\cdots \mathrm{O}^{\mathrm{i}}$	$0.83(2)$	$1.91(2)$	$2.729(3)$	$171(4)$
O2W-H2WB O^{i}	$0.82(3)$	$2.09(2)$	$2.894(3)$	$169(4)$
O3W-H3WA $\mathrm{O}^{2} W$	$0.81(4)$	$1.99(2)$	$2.784(4)$	$164(4)$
O3W-H3WB $\mathrm{O}^{\text {(4i }} W^{\text {i }}$	$0.81(3)$	$1.96(2)$	$2.771(4)$	$179(4)$
O7-H7A \cdots O1	$0.83(2)$	$1.82(2)$	$2.626(3)$	$164(3)$

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $1+x, y-1, z$.

H atoms attached to C atoms were included at calculated positions and treated as riding atoms $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom)]. H atoms of water molecules were located in difference density maps and refined isotropically, with the restraint $\mathrm{O}-\mathrm{H}=0.82$ (2).

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 20271018), the Natural Science Foundation of Heilongjiang Province (grant No. B0109) and the Outstanding Youth Foundation of Heilongjiang University (grant No. J200206).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART, SAINT and SHELXTL (Version 5.16). Bruker AXS Inc., Madison, Wisconsin, USA.
Chapman, M. E., Ayyappan, P., Foxman, B. M., Yee, G. T. \& Lin, W. (2001) Cryst. Growth Des. 1, 159-163.
Clegg, W., Cressey, J. T., McCamley, A. \& Straughan, B. P. (1995). Acta Cryst. C51, 234-235.
Lu, W., Luo, X., Wu, B., Mao, J. \& Jiang, X. (1999). Acta Cryst. C55, 1472-1475.

Lu, W., Wu, B., Wang, L. \& Lu, Y. (2000). Acta Cryst. C56, 316318.

Palkina, K. K., Kuz'mina, N. E., Myasnikov, O. E., Orlova, I. M. \& Shchelokov, R. N. (1995). Koord. Khim. 21, 72-77.

Pisarevskii, A. P., Mitrofanova, N. D., Frolovskaya, S. N. \& Martynenko, L. I. (1995). Koord. Khim. 21, 944-948.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Q., Hu, M., Cao, R., Liang, Y. \& Hong, M. (2001). Acta Cryst. E57, m122m123.

